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The theory of surface gravity waves scattering at vortex flows in the ocean is developed in this
paper. A scattering amplitude is found in the Born approximation as a function of vorticity
that appeares very convenient for investigation of scattering at simple localized flows. It
is shown that the wave scattering cross-section is determined by the vertical component
of vorticity,  For a random (turbulent) vortex field the scattering cross-section per unit
volume is determined by vorticity correlation function. The damping of the coherent wave
component and the angular spectrum widening are calculated for multiple scattering at
vortex turbulence of drift flows. The spectrum angular width evolution for waves scattered
at self-similar vortices of the logarithmic boundary layer is determined only by its dynamical
speed and the wave vector. The latter result may be used for a remote sensing of oceanic
turbulent drift flows based on observations of surface waves.

1 Introduction.

Vortex flows of various scales are among most important natural factors influencing surface
gravity waves in the ocean. Flow field of synoptic and meso-scale vortices produces a consid-
erable refraction and other effects for waves propagating from any generation area (Phillips
1984; Hayes 1980; Sheres & Kenyon 1990). Small-scale vortices generated by upper layer
convection, shear flow instability or wave breaking also play an important role in surface
wave dynamics (see, for example, Monin & Ozmidov 1981; Longuet-Higgins 1992).

But some of physical mechanisms of the subsurface vortices influence on a gravity wave
propagation are still unclear. For example, the effect of wave damping in a turbulence has
been treated before in terms of turbulent viscosity (see Kononkova 1969; Kitaigorodskii
& Lumley 1983). But the estimations of a wavedecrement obtained in such a fashion are
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rat her discrepant: they lead to very different values and fail to reveal physical features of
the processes taking place.

Here we wish to pay attention to a phenomenon of surface wave scattering at subsurface
vortices, First we investigate wave scattering at a localized vort ical area. Then scattering by
vortex turbulence is considered with special attention to the turbulence of wind drift flow.

The effect of surface wave scattering by turbulence was investigated for the first time by
Phillips (1959). Some results concerning gravity wave scattering at spatially homogeneous
and horizontally isotropic turbulence were obtained by Raevsky (1983) and Sazontov &
Shagalov  (1985). But it is obvious that more realistic models should take into account the
vertical inhomogeneity of sub-surface turbulence,

Turbulence in an ocean can be caused by various factors: internal waves, wind wave
breaking and so on (see Phillips 1977; Monin & Ozmidov 1981). We wish to emphasize
however that sub-surface turbulence caused by wind drift flows is one of the most important
forms of turbulence that influences surface waves. Note that the interaction with drift flow
turbulence is an inherent effect for wind waves, whereas turbulence of any other origin is an
incident al factor whose random appearance is not caused by wind. Besides the effect of drift
turbulence on the damping and scattering of swell propagating through a storm area is also
of considerable interest.

A wind drift flow appears near a sea surface mainly under the influence of a tangential
wind stress. The features of this flow are quite similar to those of a turbulent boundary
layer on a solid surface (see Wu 1975; Jones & Kenney 1977; Lin & Gad-el-Hak  1984).
In particular, at a depth greater than the viscous layer thickness and up to the external
turbulence scale Lt (which is usually determined by stratification or by the Eckman scale)
the logarithmic boundary layer (LBL)  approximation is valid that has self-similar properties
(see, for example, Phillips 1977). Here we consider surface gravity wave scattering at a
vertically inhomogeneous turbulence of LBL. This problem has not been investigated before
but it seems to be important for wind wave and swell dynamics.

2 Basic equations.

We use equations for an ideal incompressible fluid and boundary conditions at the free surface
z = ~(z,y) and at the bottom z = –H:

N (-@v ;i”~+-gz) = Vx[v xv ]
P

(1)

Here V = (V., VV, V.), Vl = (V., VV, CI), VJ = (&, &,o) .
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‘I’o investigate waves of small amplitude propagating on a background flow we consider a
fluid motion as a superposition of an undisturbed vortex flow U(r) (in particular, it can be
a turbulence with given statistical properties) and a perturbation caused by a surface wave:

V= ’U+-v ,  [=h+q ,  p=p–pgz+~ (2)

where v(r), q and ~ are wave fields of the velocity, surface displacement and pressure.
The following approximations will be used below:

1. Small wave amplitude. We will develope below a linear surface wave theory and so we can
neglect terms of the form v “ v . Linearized equations for infinitesimal wave perturbations
on a vortex flow background have the form:

(-)g+v ; +( V” V) U+(U” V)V = o,
V“v == o,

tl?j NJz
—–vz(z= O)+(I_J1. VL)q-xq =  –(vN’l)h+~h
at z

8$
j5(z=O)-pgh == –Zh, V,(Z = –H) = o

(3)

2. Small  I?roucle  number. Calculating wave scattering at a turbulence we take into account
that the value of typical turbulent speed fluctuations U is usually small in comparison with

nthe phase speed of gravity waves VP = g k and so the Froude  number  is

P = kU2/g  <<1 (4)

3. Qua.zi-sia.tic  approximation. We suppose the turbulent vortex flow to be much slower
than the wave motion and, therefore, if their space scales are the same, the ratio of turbulent
frequency Clt to the wave frequency is small:

fl~<w (5)

The condition (5) makes it possible to consider wave scattering at turbulence in the
quasi-static approximation, i.e. to take into consideration the time dependence of turbulent
velocity only in the final expressions. This condition is always valid if the Froude number of a
flow is small enough: I’ <<1- for vortices with a distance scale  1 greater than  the wavelength
A . Vortices with the scales 1< J/2 do not participate in a resonant wave scattering.

4. Subsurface flow under a rigid boundary. The undisturbed flow is described by a system
of equations
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au
( )

U2

~+v _# = Ux[vx u],
P

V.u = (), (6)

[1N Jz
&(WVL)~ =  uz(z= o)+ ~ “h

,. 2=0

[1(9P
p(z= o)+ & .h==pgh  , Uz(z = –H) = o

Z=o

Using the condition (1) we can neglect in (6) the terms containing time derivatives. In this
approximation the first and the fourth equations of the set (6) lead to the following relations

%IpU2, hd. J2/g, kt”h~F’ (7)

Here kt = 27r/Lt is the characteristic size of vortices.
It follows also from the second equation of (6):

6YJZ
—== -(v.. U.)
dz

(8)

Substituting Eq.(8)  into the third equation of (6) we can find that

U.(Z = o) -kt. hW~Fd J~ktU3/g (9)

If the Froude number is small (in the limit U -+ O) it follows from (9) that U=(Z = O) < U1
and we can use in this approximation the boundary condition:

U=(2 == o) = o (lo)
Thus in the first approximation on the Froude number the background vortex flow can

be considered as a fiow near a rigid boundary at z = O .
Under the approximations given above we can neglect righthand sides in the Eq.(3)  and

rewrite Eq. (3) in the following form

(-)$4-V ; == --(v. V)u -(u o V)v ,

V“v == o, (11)
arl
~ –  ?)=(2 == o) == ---Vi  “ (Ulq) ,

j(.z=o)-pgq  =  o , V=(Z = –H) = o

If U = O the righthand sides of (11) equal to zero and we have from (11) the system of
equations describing free propagation of small surface waves. Nonzero terms in the righthand
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sides of (11) determine the influence of an arbitrary subsurface vortex flow (but taking into
account the approximations (4) and (5) on a surface wave propagation).

To calculate this influence it is convenient to use Fourier transformation of Eq.(1 1). We
define Fourier amplitudes as:

/
Pk = j(r) c exp (–ik . r) d 2 r ,

where r == (z, y) is a 2-dimensional vector, and index k designates the amplitudes of exp (ikr)
harmonics. It can be found from (11) that:

d2qk

[

8 fik
—  = -  x ( ; ) +  2(U1  “  vl~z)kdt2 1 .2=0 (13)

To find the value l?k/ p we use the first equation of the system (11) that leads to the
equation

where:

(v. v~)u+(u.  vl)v+vz W
1

“X+u=”g +

[

NJz au.
,02 (v. vl)uz+(u  .vl)vz+vz.  ~+-uz” ~

1
(15)

:(~-k2pk)=-nk (14)

Note here that we use the approximation of small Froude number and so we may neglect
all terms containing higher powers of a vortex velocity U in equations for surface waves.
Taking into account boundary conditions at z = –H , we can find from (14) at the first
approximation:

Pk—= A . cosh[k(z  +- H)] – ~ “ ~~~ ~k o sinh[k(z – z’)]dz’ (16)
P

Now we substitute (15) into (16) and use the continuity equations for the perturbation
velocity v and for the background velocity U (the second equations in systems (11) and (6)).
After integrating by parts and taking into account the boundary conditions at z = –H we
find
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Pk—~

-; .~Hsw:-  .;

cosh[k(z+ll)]  - -

Vl((v “ Vl)u + (u “ V1.)v-t

(17)

4-U(V1 . V) + V(VL “ U))]k d z ’  +

+2jz cosh[k(z--zl)][(v  V,.)Uz +  (U%)vz]kdz,
– H

It follows from (17) that:

[ 0 1
a fi~

72 ~ ,=0 ( )
= k . tanh(k~) . @ – (18)

P .=0

J
0 Cosh[k(z  + ~)1 [v ((v . Vl)u + (U . Vl)v +- U(VL “ v) + V(VL  “ U))]k ‘z –

—
- H cosh(kH)  “ 1

–2k .
/

o sinh[k(z + H)]
. [ ( V  c VL)U.  +- (U. Vl)v.]k  dz -

- H  cosh(kH)
– 2  [ ( ( V .  VL)UZ +-  (u “ Vl)vz)k].=o

The condition (9) allows us to omit the last term [{(U. v~)~.}k].=o in (18). Substituting
(18) into Eq.(13)  and using the forth equationof(11) to express (Fk/p)z=O  in terms of qk we
come to the equation:

(19)

= J&$L:dZ cos&,  ~
[cosh[k(z+  H)] ~ (k ~ Uq~-k,))  o (k ~ v~k,)+

+- ik . sinh[k(z + II)][((k – k’) . vlk~) u.(k_kq  i- (“o  ‘,.(k-k,)  ‘= k]]

where w; = gk o tanh(kll) .
Confining ourself to the first approximaticm  we should take the velocity amplitudes Vk

of the zero order in the vortex velocity U , corresponding to a free plane potential wave:

dqk sinh[k(z +- ~)] ik ~vz k— .
“ k=  d t

vJk= <”_&_ (20)
sinh(k.H)  ‘ k

and to substitute them into the right-hand side of (1 9). Then taking into account the
incompressibility condition:

:Uz (k-k’)  + ~ ((k – 
k’) “ u~(k-kf) ) =0 (21)
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which is found from Eq.(8)  we have from Eq.(19)

,

where

Al(z, k,k’)  =
2. sinh(k’~) “ cosh(kll)  “

(23)

[(1+%)
. cosh[(k + k’)(Z + H)] –

(’-ki~’i
—  .  cosh[(k – k’)(Z + H)]

AZ(Z, k, k’) =
1

2. sinh(k’Xf) . cosh(k17) “

(’+’’) ”(1-=)
. sinh[(k  – k’)(z  + H)] –

-(k - “) .
(“-*)

. sinh[(k  + k’)(z  + H)]
1

(24)

The integro-differential equation (22) derived in the first order approximation over the
value @ = ku/wk is convenient for the investigation of surface wave scattering at a quazi-
static vortex flow employing a perturbation method.

3 The scattering amplitude for surface gravity waves.

Now let us calculate in the Born approximation the scattering amplitude for a wave at a
vortex flow in a given volume. We can calculate the scattering of waves with various scales
(wind waves, swells, tides, tsunamis etc.) by any arbitrary distributed dynamical vortices
in an ocean of finite depth, Here we confine ourselves to the investigation of some special
cases. To make the first Born approximation we substitute into the right-hand side of (22)
the expression corresponding to a monochromatic plane incident wave:

~kl = (27r)2 . qO . exp(–kd)  . 6(k’  – ko) (25)

where W2 = g ko . It implies that the incident wave is scattered only once. Thus we have the
first-order scattered field amplitude:

~:) w’

kl)wk + ko) “ U1.(k-k,)=
) . Al(z, k,ko)  -t

70
(J2 — (J2

(26)

+ i - Uz(k-k,) “ A2(z, k, ko)]
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The space distribution of gravity waves is determined with the poles W2 = w: in (26). The
integration path in the complex plane of k= for the reverse Fourier transform is defined by
causality and must turn round the pole wk = w opposite the clockwise direction. Integrating
along this path we have from (26)

@ .+

/

d2 kV ~ik,  =x+ikvv.
‘ 2 ./O q k. + ko) I Ul(k,-ko)—= —, —  .

(27r)2
) ~ Ai(z,k.oko)]

qo 2X 2(cb/dk) o km - H

(27)

Here k. = (k m, k~), ks~(kV) = (k2 -- kj)1i2, and k = k. . We have taken into account that
for k, = k. the value Az = O .

Using the stationary phase method one can reveal from (27) an asymptotic form of a
, scattered wave in the far field when kr >> 1

(28)

Here

is the scattering amplitude. The scattered field  q~) depends upon the radius vector in the
horizontal plane r = (x, y) . And the scattering vector k. is directed along the radius-vector
ks=ks”  r/r.

NOW we can find the value (ks + k“) o Ul(k,_kO)  which the integrand in (29) is proportional
to. It is convenient to expand the horizontal turbulent velocity ‘Ul into two components: a
vertical velocity that is determined by the vertical component 0= of vorticity Cl = mtU ,
and a potential component that is determined by the value U=

(30)

Here q = k, – ko, q = 2ko o sin(6/2)  , and n= is the vertical unit vector. This expansion
leads to an equation

2([k.  x ko] “ n.) k; –  k; tXJ.q
(k, + ko)ul.q  = ~q2 “Qz(q)+i”  .—

92 8Z
(31)

One can see from (3I) and (29) that as far as ks = k. the scattering amplitude ~(k,,  k“)
is determined only by the vertical component of vorticity. This circumstance seems to be
rather useful from the experimental point of view because exploration of the value 0= needs
measuring only horizontal velocity components.
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Substituting the expression (31 ) and the formula (23) where k’ = ko and k = ks into
Eq.(29),  we find

kO

[ 1
k . 1 ’ 2  2([ka x ko] “ n=)

(32)t(ks, ko) = 2(~,dk)  “ ~ “ (k. - ko)z “

1  ~; [(l+ $j-$’)  cosh,2k,z+H,,-- (1-%)] ‘~z,,,-,o]~.
sinh(2koll)

For shallow water waves (k? -+ O) the scattering amplitude (32) has the same form as for
sound waves scattered at two-dimensional vortices (see Fabrikant  1983):

[ 1
1’2 k. “k.  2([k.  x ko] “ n.) –

j(k.,  ko) =+. & O—O
2n-a kako (k, -  ko ) ’  “  ‘z ( k’ - k” ) (33)

where

10

Jnz(k~-ko)  =  ~ “  _H ~Z~z(k,  -ko) (34)

is simply the vertically averaged vorticity,  This result seems to be quite evident due to the
analogy of shallow-water approximation with two-dimensional acoustics (Landau & Lifshits
1987).

For deep-water waves (H ~ m) we have from (32)

(35)

where

I
o

1(’, -’,)  –– 2 ko . ~Z~z(k, -ko)
. ~2koz (36)

- H

We can see from (35) and (37) that only subsurface distribution of the vertical vorticity up
to the depth \ z [< lk = k;l determine surface wave scattering in a deep water.

Below we are confined to the deep-water waves, taking into account a possibility of an
evident generalization for a finite depth.

4 Scattering at localized vortices.

First of all, let us consider some general properties of the scattering amplitude. We can
introduce the scattering angle O by the relation
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ks . k.
—= COS9

k. ICI)
(38)

t

and rewrite Eq. (35) in the following form

j(ks,  ko) = ~&. cot; o (1 + cos~) - ~(k,-ko) (39)

The formula (39) is very convenient for investigation of scattering at simple localized
vortex flows with given vorticity distribution O.(r,  z) .

One can see from (39) that there is no backward scattering: for (0 = m) we have
~(–kO, kO) = O . The scattering at small angles (L9 = O) depends on the value of circu-
lation around the vortex 27r~ averaged along the scattering layer, where

27r~ = ](k,_kOcO)  = 2 k o /d’r~HdzQz(r>z).2  k”z

= 2ko .
~~ [~”l(r,Z)d]  .e’’o.dz

(40)

If ~(k,_kO=O)  # O the scattering amplitude has a singularity (a pole) at 6’ = 0. This Pole
is due to a slow decrease (M r–l ) of the velocity UL when r ~ 00 so that even far-distant
rays are refracted in this kind of flow field.

The vorticity field may be expanded into a multiples series

~(k,-ko)  = ~(k,-ko=o) + (k, – ko) “ P + . . . (41)

where the vector

P= JMm2T (42)

is the dipole moment of a vorticity in the scattering layer. In the long-wave approximation
when typical horizontal size of a vortex is small comparing to the wavelengh  ( koL << 1) we
may confine ourself to the first nonvanishing term of the series (41). If the total flow vorticity
l@_ko=O) # () , the vortex flow can be replaced in the first approximation by a point  vortex
with the circulation 271-tc  . Then the scattering amplitude has the form

[ 1

i/2
tcko

f= ; .T. cot;  .(l+coso) (43)

Therefore, the scattering of long waves is determined by the vortex oscillations as a whole
and does not depend on the vortex inner structure, Note that Eq. (43) is an accurate formula
for the scattering amplitude at a vertical vortex line whose length is large in comparison with
the wavelength.
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For vortex flows without circulation when l(k,-kO=oJ  = O the scattering
the form:

(27rik,)3J’
~(k.,  kO) = iw o kO . (1 + cos 0) . [PV . (COS O + cos 00) +- PZ “ (sin O -t

amplitude has

sin 00)]  (44)

where 00 is the the direction angle of the incident wave. The function ~(~) is finite in this
case for all angles O .

We supposed above an arbitrary flow vorticity distribution I(r) . The only condition for
this function is its fast decreasing when \ r [-+ ea so that Fourier transformation leads to
the finite fU,nCtiOn  ~(k,-k,) .

Now we consider an axially symmetrical vortex with the Fourier transformed vorticity
depending Only upon k = I k ] . To calculate ~(k,_kO)  we use polar  coordinates with the polar
axis directed along the vector k . Then we have:

(45)

This integral is finite if 1(T) decreases like r-s (where s > 3/2) when T + m .
For the oseen  vortex with a vorticity l(~) = 21? “ exp(–r2/R~)  we have from (45) ~k ==

27rBR~  “ exp(–k2R~)  and the scattering amplitude (39) has the following form:

~BR;ko

‘“m’ [
cot ~ .(] + COSO) . exp -4k~R~sin2(~)

1
(46)

Some useful results can be found for surface waves scattering using a point vortices model
for an averaged undisturbed flow vorticity l(r) . Approximation of a fluid flow by a system
of point vortices has been widely used before (see, for example, Batchelor 1970), It would
be quite natural to put an analogue  (kinematical, at least) between point vortices in fluid
dynamics and point charges in electrodynamics. But there is a significant difference between
these two objects, Wave scattering at a point vortex flow is determined not only by the
vortex core but also by the refraction in the flow velocity field that stretches far away from
the core. As it has been noted before, it leads to a peculiarity in the scattering amplitude
for small angles. On the contrary, the point charge Coulon field does not influence on the
electromagnetic wave scattering due to the linear superposition principle in electrodynamics.

Now we calculate a scattering amplitude for some simple systems of point vortices. In
particular, for a “double vortex” – a pair of point vortices with equal circulations tc , that
rotates around a center between them with the frequency C?. = 2~/d2  (d is the distance
between vortices), – we have the formula for coordinates of these vortices:

(47)
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The scattering amplitude has a form:

()
1/2

j(e)  = i/co ;

( )

“ko”(l+cose)”  cot : “ (48)

{
Cos $

}

~ o [(COSO  - cos 0.). cos Cloi!  + (sin~ - sin OO) . sin floi!] =

()271i 112
=ilc.  — . kO . (1 + COSe) . cot(;).

9

(
~(-l)m ~ Jm kOd sin%
m )“cOs[m”(oO’-*)l

where 60 is the incident wave vector angle. We can see from (48) that wave field scattered
at this oscillated flow includes an infinite spectrum of combined harmonics with frequencies
w+mfl”  (m = 0,1,2, ...).

For a vortex pair with opposite circulations that moves along the z-axis with the speed
V = ~/d we have:

{ }
r; = Vet, (–l);- ~ , i=l,2 (49)

and the scattering amplitude is:

()
1/2

j(e)=  -K. -;

() [

“ko. (l+cos O). cot : “ sin
1

~ . (sin 6- sin 00) o ei~Ov”(cOSo-CO’  OO)’

(50)
In the frame of reference confined to the vortex pair and moving with the velocity V the
flow is steady and the scattered wave frequency equals to the incident wave frequency. For
a moving observer the latter frequency is

,

( koV . COS &I
J= -(J. l–

w )
(51)

Therefore the scattered wave frequency in a fixed frame of reference differs from the
incident wave frequency and the difference is the Doppler frequency shift:

kOV
Aw= w-. Cos e (52)

w
calculated in the first approximation (compare to Fabrikant  1983).
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5 Scattering at a homogeneous turbulence.

Now we investigate a turbulent background flow that has no mean vertical vorticity:

<flz>=o (53)

Let us consider a turbulent volume confined by an area of the size L in the horizontal
plane. Suppose turbulence statistics is horizontally homogeneous inside that area and so the
correlation function may be written as

< f?z(?”, z’) c f)z(r”) z1l) >= Q(r’ – r“, Z’, Z“) (54)

The latter condition may be approximately satisfied for I r’ – r“ \ S Lt << L if the area
size 1. is large enough and outside some boundary layer of the width equal to the correlation
l e n g t h  L t.

It follows from (39),(37) and (54) that the differential scattering cross-section for deep
water waves is

Here S denotes the scattering area, and

Q(q, Z’, Z“) = / (Q r, z’, z“) . exp(–iqr)d’r

(55)

(56)

Two simple models of a homogeneous subsurface turbulence may be considered. The first
model is the two-dimensional turbulent flow where vorticity  does not depend on debth.  The
vorticity  correlation function Q(q) in this approximation is a function only of the horizontal
wave vector q and so we have from (55)

do=S  k;

()
~ . ~ . (1+  cos0)2cot2  ; o Q (q ) .  dO (57)

Another simple model is the 3-dimensional homogeneous turbulence with the correlation
function

t

Q(q, z’, z“) = Q(q, Z’ - z“) (58)

In that case we can use new variables

z+ = z’ +- Z’i , z,’ ~ J — z’1 (59)

and find from (55)
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do=:  k3 ()!~ . & .(1+ COS8)2 . cot ’  ; . _~@ Q(q, z.)dz.dO (60)

Tomakea further analyses wemustknow  avorticity  spectrum Q(q). Inparticular,  the
well-known Kolmogorov spectrum for homogeneous and isitropic turbulence may be used
(Landau & Lifshits 1987). The Kolmogorov spectrum of vorticity may be written in the
following form

Q(k) =C4-f (61)

‘ h e r e  k = m ( we mean a 3-dimensional spectrum).
It is evident however that the total scattering cross-section

IC-I= do (62)

diverges at small scattering angles for the Kolmogorov spectrum (61) where k = 2k0 “ sin (6/2) + 0.
And so do some other characteristics of scattering considered below. All these scatter-
ing characteristics are determined by the large-scale spectrum components that are usually
anisotropic and inhomogeneous and can not be described by the Kolmogorov universal law.
Therefore we should use a particular turbulence spectrum limited at large scales.

6 Surface wave scattering at the turbulence of a
boundary layer.

One of the most important types of turbulence in the upper ocean influencing on surface
waves is probably the drift flow turbulence. Due to the boundary condition (10), derived in
the first approximation on the Froude  number, a subsurface turbulent flow maybe considered
as a flow near a rigid boundary at z = O. It permits us to use the model of logarithmic
boundary layer (LBL)  near a solid surface.

In the self-similar region of a turbulent drift flOW when z << L the correlation  function
depends on the dimensionless variables ~ = q(z’ + 2“)/2 and x = z“/z’.  Note that the
exponent in (55) limits the integration area by the condition: ~ < q/k. = 2 sin ~ < 1 . Kader
(1984) proved that under the condition ( <1 the correlation functions do not depend on ~ .
Using this fact and the absence of vorticity correlation at the scales r >> Lt , we approximate
the function Q(q, z’, z“) by an expression:

Q(q, z’, Z“) = v: . @(n, X) o H(9  – %) (63)

Here n = q/q , qt = 2~/h , v. is the L13L dynamic speed, @(n,  X) is a dimensionless
function (O < @ s 1) and

{

o if q<o
H(q)= ] if q>o
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is the Heaviside step function, Then employing the approximation (63), from (55) we have:

k;v;
<d~>=S. —” G(n) o (1 + cos 0)2 cot2

( )
; dO,

41Tg
(64)

where 6> 2. arcsin(qt/2ko) and

‘m @(n)X)
dxG(n) = ~ (1 i- X)2

It should be noted that, if q w qt , the LBL spectrum
and therefore in an area 6’ ~ q:/ko w 1 the expression (64) is suitable only for qualitative
estimations. At the same time, if ~ << 0 << 1 , the expression (64) gives the right asymptotic
form for the scattering cross-section:

(65)

approximation (63) is rough

<du> 2k~v~  G ( n )  dO— .  —=s 62 (66)
ITg

The scattering cross-section, although calculated in the single scattering approximation,
may be used for investigation of some multiple scattering effects such as damping of coherent
field component < ~k > and transformation of waves angular distribution. The Bourret
approximation may be used if scattering fluctuations are small enough 1. It should be
emphasized that use of that approximation is not based on a specific features of the given
Green function and so does not depend on features of the scattering medium. For surface
wave scattering problems a Froude  number may be considered as a small parameter.

It may be proved under the Bourret  approximation that the coherent field component
decreases exponentially along the propagation distance and the space damping rate D for the
coherent component (the extinction coefficient) is proportional to the total cross-section (per
unit area) (Rytov,  Kravtsov & Tatarsky 1978)

1
/

< d o > k;v~ x
p=– — .

/
G(n) . (1 + cos0)2 cot2

( )
; d9

2 s = 
16xg

(67)2 arcsin(qt/2ko)

For short gravity waves (kOLt > 1) the main contribution to the integral (67) is made
by small angles O < 1 . As a scattering angle corresponding to a turbulent scale L is of
the order OL N (koL)-l , so the damping of the coherent component is evidently determined
mainly by large-scale turbulent vortices ( koL >> 1). Taking into account a small value of the
angle O we can use instead of (67) an approximate formula

k;v;Lt
z = G(no)  .

21r2g ‘
(68)

where no is a unit vector that is orthogonal to the wave vector k. . The dependence of the
value D on the direction of the wave propagation is a consequence of an LBL anisotropy in
the horizontal plane.

1 That approximation implyes  that all higher terms except the first one in the perturbation expantion of
the mass operator in Dyson equation are neglected (Rytov, Kravtsov & Tatarsky 1978).
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7 Surface wave angular spectrum evolution.

Besides the damping of a coherent wave component, variations of an angular spectrum and
correlation function due to the scattering are also interesting. This effect may be competitive
for other known processes, for example, wind-wave interaction, nonlinear wave processes etc.

The spectrum evolution may be found for the case of practical importance when koLt >1

and scattering is small at a distance Lt . In that case under so called “staircase” approxi-
mation a typical form of a transfer equation for wave intensity J(rj n) may be written 2

.
n o VJ(r, n) = J ~(n)n’)”J(r,n’)~2~’  -2~oJ(r,n) (69)

) – (z, y) and a(n, n’) is the scattering cross-section in the Born approx-where n = (nZ, nV ,r —
imation,

We may replace the integration variable in (69) on the transverse angle 6’ and then , using
the small angle approximation (66) for the scattering cross-section, we find from (69) for a
wave propagating along x a transfer equation in the form

(9J 87rk;v~
%= g “ ‘ ( n o )  

~Ol>q,/ko
J(e–@g-2m J [70)

Here we take into account that the minimum scattering angle 9A. is determined by the
maximum scale of a turbulent spectrum qt = 2n/Lt .

To find a solution of the transfer equation it is more convenient to use instead of (70) an
equivalent equation for the transverse correlation function of the wave complex amplitude
a(~)y)

K(R, z) s< a(z, y) . a“(z, y + R) >= ~ J(O) . exp(ikoOR)d(koO) (71)

Using the Fourier transformation we find from Eq.(70)

:K(l?, z) = [W(R) – w(o)] o K(R, z)

where

167rk~v~  G(no)
W(R) = ~ . — . [Cosq,ll  +- qtli  . Si(qtR) – ;qt [ R []

%

(72)

(73)

Equation (72) has the solution:

K(R, Z) == K(R, O) . exp ([W(R) -- W(O)] , z) (74)

that leads to an asymptotic expression for the correlation function:

‘The  staircase approximation is based on the use of small value of turbulent fluctuations (small Froude
number in our case) and large value of turbulent scale (koLi >> 1) as well. A transfer equation may be
derived under this approximation from a Bethe-Salpeter  equation (Rytov,  Kravtsov & Tatarsky 1978).

16

,



(K(R, x)= K(R, O). exp –
8~2k;v~

, G(no).  I R [ z
)

(75)
9

corresponding to a distance z where the transverse correlation scale R. for a wave field
becomes less than the external turbulence scale Lt . For a typical correlation scale R= (that
is determined on the level e-l) in a plane wave we have from (75)

g _ L_, —
47T2VZ

(76)‘ C  = &#k:v:qno)x

The condition k;l < R. < L, determines the range of distances where the expression (75)
is valid:

(47r2V)-’  < z < k Lt . (47r2U)-1 (77)

It should be emphasized that the transverse correlation function in this range does not
depend on the external turbulence scale and is determined only by LBL features, thus being
universal for arbitrary turbulent drift flows.

The wave intensity angular spectrum that corresponds the correlation function (75) with
the boundary condition K(R, O) = 1 is

8~2k&~x

[

–164~2k$vfG2(nO)  z
J(o) = g “ G(no)  . s X + k;82

1
(78)

92

The spectral width ~ can be found from (78):

k:v: 47r2i7
~ =  8n2G(no)  o —  o –  —

‘–koLt”x
(79)

9

This expression coincides with the natural definition ~ = (koRC)-l.
Thus the correlation scale R. of a plane wave at a distance z = ~ s (47r2D)-1  (that also

is a characteristic of a coherent component) is of the order of Lt and the angular spectrum
width: @ = (koLt)-l. The angular spectrum becomes significantly wider (~ ~ 1) at a distance

z w Le = g [8n2k~vjG(no)]-1  = (koLt)  “ ~ (80)

8 Discussion.

In case of koLt >> 1 (that is valid in many
an explicit form of the extinction coefficient
well as the wave intensity angular spectrum.

important situations), it is possible to derive
u and to calculate the correlation function as
In that case the damping of a mean wave field

is determined by large vortices with the scales J N Lt . The corresponding expression (68)
gives the dependence of the decrement Don drift flow parameters and on the wavelength.

17



The process of transverse correlation evolution and angular spectrum widening for the
wave that was initially plane can be divided into three stages if koLt >> 1 . At distances
x s ~ there occurs a scattering mainly at large vortices with the scales 1 N Lt . Then the
coherent component of the wave field is transformed into a random one and the transverse
correlation scale decreases down to the value - Lt . At the second stage that is determined
by the condition (77), the wave field is incoherent and the angular spectrum widening is
determined by scattering at vortices with the scales that are in the self-similarity range
A <1<  Lt , As a result, the parameters p= and ~ do not depend on the drift flow depth
and are determined only by the speed V* and the wave propagation direction. The angular
spectrum width can be measured by remote sensing methods, which makes it possible, in
principle, to realize remote sensing of drift shear flows.

Finally, at z > Le an essential widening of the angular spectrum occurs. That stage
cannot be described by the theory developed above.

It would be very interesting to make an experimental test of the theoretical results found
here. We give here some estimates for typical oceanic conditions of multiple scattering
effects in LBL turbulence that have been considered above. If a wave of the wavelength
A == 30m propagates in a drift flow with a speed V* = lcm . s-l and a characteristic length
scale Lt = 40m , the self-similar dynamics of an angular spectrum sets in at distances
z 2 ~ = 3km. The width of the angular spectrum is about 12° at that distance.

It should be noted however that under the condition of moderate or strong wind, various
competeting factors influence the gravity wave propagation. In the first place, they are the
wave interaction with an atmospheric boundary layer and the nonlinear interaction with
wind waves. Generally speaking, these effects are comparable with scattering at a sub-
surface turbulence. The effects of scattering considered above can manifest themselves in a
net form under a light wind with a speed close to the threshold of wind wave generation. For
instance, considering a wind with the speed 2m . s-l (v. = 0.2cm . s–l ) which does not affect
waves with wavelengths longer than lm (cf. Phillips 1977) we have the value ~ = lkm for
a wave with A = 3m and I.t = 5m.

9 Conclusion.

The scattering amplitude (32) derived in the Born approximation allows us to investigate
some general properties of surface gravity wave scattering at vortex flows and to find scat-
tering amplitude for some particular localized vortices such as point vortices, axially sym-
metrical vortices, monopole and dipole vortices. The use of the Born approximation under
the condition of small Froude  number seems to be a rather weak restriction for cases of prac-
tical importance. A very important result found in this approximation is that the scattering
amplitude is determined by the vertical component of vorticity field.

The most part of known vortex flows have a relatively simple vorticity distribution in
space. At the same time the velocity field for that flows is as a rule more complicated. This
is originated in the well-known fact that the vorticity is a conserving value and is transferring
by inviscid  fluid particles without changing (Lamb 1947). In particular, if a flow is steady
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its vort icit y is constant along closed streamlines. That is why expressions of wave scattering
characteristics for a vortex flow in terms of the vorticity of that flow is more convenient than
use of a velocity field. These characteristics has been investigated here for some localized
vortex flows, in particular, point vortices.

Scattering by turbulent vortices seems to be of more geophysical interest. The estimations
presented above show that any contemporary ocean wave prediction model (see Hasselmann
et al. 1988) must anyhow to take into account the effect of wave scattering at subsurface
turbulence. For horizontally homogeneous turbulence the scattering cross-section is propor-
tional to the vorticity  correlation function integrated along subsurface layer of a wavelength
debth.  The scattering of gravity waves at a drift flow turbulence has been investigated
employing the self-similarity of correlation functions. This is possible only if the external
turbulence scale Lt determined by the LBL depth is greater than the wave length A = 27r/k0.
If koLt w 1 , the expressions (64), (67) and (73) arc suitable for qualitative evaluations.

The research described in this paper was carried out partially by the Jet Propulsion Lab-
oratory, California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.
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